Expression of specific tubulin isotypes increases during regeneration of injured CNS neurons, but not after the application of brain-derived neurotrophic factor (BDNF).
نویسندگان
چکیده
Axonal regrowth after injury is accompanied by changes in the expression of tubulin, but the contributions of substrate molecules and neurotrophic factors in regulating these changes in vivo are not known. Adult rat retinal ganglion cells (RGCs) were examined after intraorbital axotomy, after application of a peripheral nerve (PN) graft to stimulate regeneration, and after axotomy and treatment with brain-derived neurotrophic factor (BDNF). After these treatments we used in situ hybridization to study mRNA levels for betaI, betaII, betaIII, betaIVa, and Talpha1 tubulin isotypes. Levels of mRNA for all isotypes were downregulated after intraorbital axotomy. During regrowth of injured RGC axons, mRNA levels for betaII, betaIII, and Talpha1 isotypes were upregulated specifically and dramatically, suggesting that elevated expression of these isotypes is correlated specifically with axonal regrowth. A corresponding increase in betaIII protein levels was detected by immunocytochemistry. The betaI and betaIVa mRNAs were not increased during regeneration. BDNF did not elicit a specific increase in the mRNA levels for the betaIII and Talpha1 isotypes and had only a small effect on mRNA levels for the betaII isotype. Therefore, despite the ability of BDNF to support the survival of injured RGCs and to enhance neurite outgrowth of retinal neurons in vitro, the in vivo application of BDNF alone is unable to induce the program of changes in growth-associated tubulins that accompany regeneration of RGC axons into PN grafts. We speculate that, in addition to BDNF, cooperative signaling with substrate molecules is required to allow RGCs to regenerate and exhibit tubulin isotype switching.
منابع مشابه
Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملEffect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors
Objective(s): The stimulation of neural stem cells (NSCs) differentiation into neurons has attracted great attention in management of neurodegenerative disease and traumatic brain injury. It has been reported that selegiline could enhance the morphologic differentiation of embryonic stem cells. Therefore this study aimed to investigate the effects of selegiline on NSCs differentiation with focu...
متن کاملDifferential Effects of Resveratrol on the Expression of Brain-Derived Neurotrophic Factor Transcripts and Protein in the Hippocampus of Rat Brain
Background: The induction of brain-derived neurotrophic factor (BDNF) expression in the hippocampus has shown to play a role in the beneficial effects of resveratrol (RSV) on the learning and memory. The BDNF gene has a complicated structure with eight 5’ noncoding exons (I-IXa), each of which can splice to a common coding exon (IX) to form a functional transcript. Estrogens increase levels of ...
متن کاملAssessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model
Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 12 شماره
صفحات -
تاریخ انتشار 1997